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preparation of this report is gratefully acknowledged. He contributed to the
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ABSTRACT

An explicit finite difference formulation of the equations governing the
one-dimensional visco-plastic model was presented in the Second Quarterly
Report. The scheme has been programed on the IBM 7090 and exploratory cal-
culations made for several values of the parameters Ao (viscosity factor), ro
(yield stress) and vo (Impact velocity). Excellent resatts are obtained for cer-
tain ranges of the parameters; these results are discussed in detail. For larger
values of Po and vo, however, the restriction on the size of At is very severe.
A stability analysis is performed which explains this requirement.

To circumvent this difficulty the governing equations are recast in an
implicit finite difference scheme which is only valid for po > o, but which is then
unconditionally stable. The method is described in detail and a flow chart is
given for the mahine program which is currently being written.
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LIST OF SYMBOLS

r 0 dynamic yield value of shear stress

$o material constant, uo- called mobility coefficient

vo  impact velocity

Po mass density of undisturbed visco-plastic medium

p density of isco-plastic medium

B Bingham-Oldroyd number

R Reynold's number

t time

x particle label In Lagrangian coordinates

z Eulerian coordinate in one dimensional flow

q velocity of flow in one dimensional Eulerian formulation

A[] delta denotes increment of quantity

p thermodynamic pressure

U specific internal energy of medium

V= (1/p ) specific volume

g(VU) equation of state

P strain-rate dependent viscosity coefficient
2

T von Mises flow statistic

]j value of quantity at time station n, space station j

1. constant with dimensions of length

a constant determining magnitude of artificial viscosity

Q artificial viscosity term

S real viscosity term

iv



9

c speed of sound in visco-plastic medium

Co speed of sound in undisturbed medium

k-th approximation of quantity at time n, position J.

K number of iterations performed

J position station chosen to be in front of disturbance

C3 first variation of quantity

Ak'.... Fk coefficients in Fourier representations

S quantity defined in (A-16)

A quantity defined in (A-16)

6 quantity defined in (A-16)

y quantity defined in (A-16)

B quantity defined in (A-16)

S quantity defined in (A-16)

G amplification matrix

X eigenvalues of amplification matrix
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INTRODUCTION

*i In the First Quarterly Report (Ref. 1) a mathematical model was proposed
for the study of hypervelocity impact which takes into account the effects of
material viscosity and dynamic yield strength. In this formulation the material
is considered rigid if stressed below its flow point, whereas the material acts
like a Newtonian viscous liquid when stressed above this value.

In the Second Quarterly Report (Ref. 2) dimensionless parameters were
found which control the relative importance of the inertial, viscous and strength
terms in the governing partial differential equations. Both the viscosity factor
po and the dynamic yield stress ro appear in these parameters. Since definitive
data is not available for either of these quantities a proposal was made that
exploratory calculations be performed using a one-dimensional model in which
the values of Io and ro are varied over several orders of magnitude. For this
purpose the governing equations were written in one-dimensional Lagrangian
form and then recast in finite difference form in preparation for the exploratory
calculations. In this scheme the dependent variables at time (n + 1) At are ex-
pressed explicitly in terms of their values at time nAt.

The present report opens with a description of some of the results of the
calculations made on the IBM 7090. Very good results are obtained for certain
ranges of the parameters Mo, ro and impact velocity vo. For larger values of
Mo and vo, however, the calculations do not converge but oscillate with increas-
ing amplitude as n increases. A stability analysis is given which shows that
this effect results from the Inclusion of the viscosity which causes the usual
restriclon on the ratio At/Ax to be replaced by a restriction on the ratio on
At/(Ax) . This conclusion is verified by the preliminary calculations. To cir-
cumvent this difficulty the governing equations are written in one-dimensional
Eulerian form and then recast in a finite scheme which is only valid when Po > 0 ,
but which is then unconditionally stable. Here the dependent variables enter
implicitly so that an iterative procedure is necessary in proceeding from time
n to time n + 1. The method is described in detail and a flow chart is given for
the calculations.

GENERAL REMARKS

(a) Choice of Parameters

In choosing trial values for Mo our starting point has been the values quoted
by Perzyna (Ref. 3). On the basis of the results of internal energy measure-
ments by Kolsky (Ref. 4) he computes the approximate values1

--------------------------------------------------------------------

1 The gram-centimeter-microsecond system is used throughout this report.

Maruracript Releaed

12 October 196J
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Steel: #o = 0.8 gm cm -I microsec - 1 .

Copper: po = 0.4 gm cm -I microsec - I .

Our calculations have all been for iron and A.o is assumed to be within a factor
of ten of 0. 8.

For mild steel Reiner (Ref. 5) quotes the static yield stress to be approxi-
mately

TO = 10-2 gm cm -1 microsec. -2,

i.e. ten kilobars. For our calculations it is the dynamic yield stress that is
pertinent. The above value is assumed to be the lowest value likely, and ro is
varied up to one hundred times as large, i.e. one megabar.

The various combinations of assumptions for Io, ro and impact velocity,
Vol are displayed in Table I. The choices of vo ( = 0. 5, 4, 7. 5 cm/microsec)
represent t1 i xtremes and mean of the meteoroid velocity range. The values
of the dimen. nless paranxers Bo and Ro are also listed for each combination
of Po, To, vo. They are seen to vary widely with the choice of combinations.

(b) Description of the Flow

If the two impacting bodies are perfect fluids, shocks are produced which
propagate at a constant velocity and the jump discontinuities across the shocks
remain fixed. With viscosity present energy is being dissipated and it might
be expected that the disturbance would be attenuated as it propagates. In the
case of one-dimensional impact between semi-infinite bodies, however, the
dissipation effect is counteracted. Here there is an infinite reservoir of energy,
a steady state obtains in which the rate of increase of internal energy behind
the disturbance just equals the kinetic energy of the medium entering the dis-
turbance. Consequently, the shape, magnitude and velpcity of the disturbance
(or "pressure pulse") does not change as it propagates. These characteristics
of the steady-state disturbance, however, are affected by the values of the
parameters po, ro and vo.

The viscosity coefficient and von Mises flow rule are (Ref. 2, p. 12)

* Some time, of course, is required for a stable profile to be

e s tabli s he d.
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TABLE I

Enumeration of parameter combinations considered for iron-iron impact. The units are in the gram-centimeter-
microsecond system. p = 7. 8 gm/cm D D= 1. In computing the required net size for the explicit scheme,0 f

a is chosen as 1.5, 't 1.5 6x.

No. Parameters Bingham No. Reynolds No. Stability Criteria Net Size A
Do T D P 2 AX= 0. 1

V= s 0 R 0DsoVo At/(x) WAtX Ao o o o - At
P v'

0 0 P0

-2
1 0. 5 0 0 2 - 3.06 0.60 6.0x 10"

2 0.5 0 8x10 1 0 4 .88 x 10 2.70 2.7 1
3 0.5 0 8 x 10"  0 4.88 1.38 1.4 "
4 0.5 0 8 0 4. 88 x 10 0. 23 .3 x 10
5 0.5 10"2 0 2 1 3.06 0.60 6 .0x10
6 0.5 10 2 8 xO . 2.5x10"1  4. 88x 10 2.70 2.7 "
7 0.5 10" 8x101  2.5 xlo- 4.88 1 1.38 1.4 "

8 0.5 10 8 2. 5 x 10 4.88 x 10 0.23 2. 3x 10
9 O.5 101 0 -2 - 3.6 -0. 6.0 x'10

10 0.5 10 8 x10 1  2.5 1 4. 88x10 2.70 2.7 "
11 0.5 101 8 X 10 2.5 X 10"2 4.88 1.38 1.4 "
12 0.5 10" 8 2.5 x 10 4.88 x 10 0.23 2. 3x 10"
13 0.5 1 0 0 3.06 0.60 6 .0 x 70l 20-2

14 0.5 1 8x10 1 2.5x 10 4.88x 10 2.70 2.7 "
15 0.5 1 8x10 2.5 1 4.88 1.38 1.4 1
16 0.5 1 8 2.5 x 10 4.88 x 10 1  0.23 2.3 x 10 3

17 4 0 0 - w 0.21 0.44 2.1

18 4 0 8 x 10- 0 4.88 x 10 0.21 2.1

19 4 0 8 x 10 0 4.88 0. 18 1.8 4
20 4 0 8 0 4.88 x 10 1  0.085 8.5 x 10 3-
21 4 10" 0 w 0 0.21 0.44 2.1 xlO
22 4 10- 8 x 102 3. 13 x lo-2 4. 88x 10 0.21 2.1

23 4 10" 8 x 10- 1  3. 13 x 10- 3  4.88 0. 18 1.8
24 4 10" 8 3. 13 x 10 4.88 x 10 1  0.085 8.5 x 10_4

-1 -__ _ 3-3
25 4 10 0 - . 0.21 0.44 2.1 xl0
26 4 101 8xlo 2 3. 13x10 1  4.88x 10 0.21 2.1

27 4 10" 8 x 10"t  3. 13 x 10" 2  4.88 4. 18 1.8

28 4 101 8 3. 13 x 103 4.88 x 10 1  0.085 8.5 x 10-4

2 4 1 0 0.21 0.44 2.1 xo0

30 4 1 8 x 10".2 3. 13 4.88 x 10 0.21 2. 1 "

31 4 1 8 x 10"1  3. 13 x 10"1  4.88 0. 18 1.8 "
32 4 1 8 3. 13x10-2 4.88 x 10

1  0.085 8.5x10 4

33 7.5 0 0 -2 .093 0.40 9.3
34 7.5 0 8x10 2 0 4.88x 10 0.092 9.2
35 7.5 0 8 x10 0 4.88 0.086 8.6

36 7.5 0 8 0 4.88 x 10 0.051 5.1 "

37 7.5 10" 0 -D 0 0.093 0.40 9.3 "

38 7.5 10" 8x 10 . 1.67 x10- 2  4. 88 x 10 0.092 9.2
39 7.5 102 8 x 10" 1.67 x 10 3  4.88 0.086 8.6
40 7.5 10 8 1.67 x 10-4 4.88 x 10"  0.051 5.1
41 7.5 101 0 -2 -1 0.093 0.40 9.3
42 7.5 10 8x 10 1.67 x 1 4.88 x 10 0.092 9.2
43 7.5 101 8xlO 1.67 x1l- 2  4.88 0.086 8.6
44 7.5 10" 8 1.67 x 10 3  4.88 x 10 0.051 5. 1

45 7.5 1 0 2 w 0 0.093 0.40 9.3
46 7.5 1 8 x 10 1.67 -1 4.88 x 10 0.092 9.2
47 7.5 1 8x 10 1.67 x-10 4.88 - 0.086 8.6
48 7.5 1 8 1.67 x 10"  4. 88 x 10 0.051 5. 1

3



2 > 2 2 4 2 2 6q 2

and hence 0

ro +3 POd O X 3 0P X)

In front of the disturbance 6q/a x=O, in the disturbance aq/ax< 0 and, finally,
aq/ax drops back to zero after ths disturbance passes. Consequently,
r2 > Tro2 in the disturbance, but r drops to ro after it passes. This means,
in terms of our visco-plastic model, that there is flow only in that part of the
medium through which the disturbance is currently passing; it again becomes
rigid behind the disturbance.

EXPLICIT DIFFERENCE SCHEME

(a) Stability Criteria.

In the Second Quarterly Report a trial stability criterion was suggested
for the finite difference scheme presented there. It was deduced by analogy
from a criterion derived for the perfect fluid equations. In performing pre-
liminary machine calculations the trial criterion was found to fail for the higher
values of the impact velocity and viscosity parameters. Therefore, this phe-
nomenon had to be investigated more thoroughly. In the Appendix the stability
analysis is presented in some detail; the essential results are contained in
(A-22) and (A-24).

To apply criterion (A-22) we recall that

aV ZI a q

dt Po ax

and approximate aq/ax by-vo/2Ax. Here vo/2 represents the velocity of the
interface as calculated from the Rankine-Hugoniot conditions (Ref. 2 eq. 64),
In our calculations we have chosenj=a Ax, a = 1. 5, so that the criterion re-
duces to

(f t < PO2

(x) u.+4.5 po Vo Ax

4
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The value for V = 1/p should be taken from the Hugoniot curve for the particular
material (Ref. 2, Fig. 4).

Now, if we are away from the shock p >> Q + / ro and condition (A-24)
becomes roughly

A t .P 0

The adiabatic sound speed c is equal to 2

S=V V = V

Consequently, in regions other than those containing a shock,

(2) At C< V (go:0)

is the approximate stability criterion. This is the tentative requirement for
stability suggested in the Second Quarterly Report (Ref. 2, eq. 66).

If (vo/2)>c, a shock will occur in the impacting materials and criterion (1)
must be applied even when po = 0. In the case of iron, for example, c 0.5 cm/
microsec. and, consequently, criterion (2) holds when vo = 0.5, while at impact
velocities 4 and 7.5 criterion (1) obtains. The stability criteria have been cal-
culated for each of the parameter combinations considered. The results are listed
in Table I along with the corresponding value of At for the choice Ax = 0. 1 cm.

The above conclusions have been substantiated by a number of machine cal-
culations, the results are displayed in Table II. It is seen that the calcule t ed
requirement onAt is a conservative estimate in each case. It may be expected
that the theoretical stability criterion is close to the required condition for all the

2In an adiabatic process dU + p W = 0. Since p = g (V, U) we may write
dp= dVag/aV + du ag/aU. Elimination of dU between the two yields
dp (ag/aV - pag/au) dV = V2 (pg/u - ag/aV) dp, whence

2
c =dp/dp =V(pcag/ a U-ag/aV).

5



TABLE II

Summary of preliminary runs testing stability of explicit difference scheme
applied to iron-iron impact. a = 1. 5, t,= 1. 5x, L x 0. 1.

NO. NET SIZE RESULT

Theory Trial

1 0.06 0. 100 Unstable

if 0.050 Stable

t " 0.065 Stable

2 0.027 0.05 Stable

3 0.014 0.02 Stable

4 0.0023 0.005 Unstable

it 0.0025 Unstable

it 0.002 Stable

13 0.06 0.05 Stable

17 0.0021 0.05 Unstable

0. 025 Unstable

0.01 Unstable

0.005 Stable

6



parameter combinations. For the most severe case, At = 5. 1 x 10-4, this
means that approximately 10,000 cycles are required for a 5 microsec. run. If
70 space mesh points are required this means 700, 000 point calculations which
would require approximately 1.4 hours on the IBM 7090. An inordinate amount of
machine time might therefore be needed to complete the desired production runs.
An alternate implicit difference scheme is therefore proposed for those parameter
combinations with larger Ao and vo valves. Before turning to this, however, let
us first examine the results of the calculations which have already been made
using the explicit scheme.

(b) Results of Calculations

To check the accuracy of the program the calculations for case No. 1
(vo = 0.5, To= 0, 0 = 0) have been examined in detail. / The pressure profiles
at various time intervals are depicted in Fig. 1. Since T = 1o = 0 the Rankine-
Hugoniot solution holds and, for comparison, these exact pressure values and
shock positions are shown at t = 1 and 5 microsec. It is seen that the shock is
better approximated with increasing time, but only 2 to 3 microsec. are required
for sufficient accuracy.

The other calculated dependent variables may also be compared with the
corresponding Rankine-Hugoniot values for case No. 1:

1$ U p q

HUGONIOT 0.08730 0.03125 1.565 0.2500

CALCULATED 0.0867 0.027 1.54 0.25

The calculated quantities represent mean values about which there are small
oscillations at the various space mesh points behind the disturbance. The largest
percentage discrepancy is in the specific internal energy.

The location where p is half its maximum value is considered to be the shock
position. At each time cycle this criterion is used to compute the shock velocity
in that time increment. In Fig. 2 the calculated shock velocities (relative to the
interface) for case No. 1 are shown. As these are found to oscillate widely, an
average shock velocity is computed according to the formula:

Shock Velocity =Position of Shock - Position of Interface
Time

7



It is seen in Fig. 2 that the shock velocity computed in this fashion converges
more rapidly and more smoothly to the Rankine-Hugoniot solution. The ratio of
this value to the true shock velocity for various times is given by

Time (microsec.) 1 2 3 4 5

Ratio 1.100 1.034 1.015 1.005 0.999

In Figs. 3, 4 the disturbance (pulse) velocities calculated in this manner are depicted
as a function of time. Each is seen to be tending smoothly towards an asymptotic
value represented by a dashed line. The value of the asymptote was computed
under the rough assumption that the rate of approach at corresponding intervals
is the same when 11Ao1 + IroIO0 as it was for Case 1, i.e., the ratios displayed
above for the perfect fluid calculations are employed in estimating all the asymp-
totic values.

In Fig. 5 the value of r2 is shown at various time intervals for a typical
parameter combination (No. 14). It is seen that at each instant r 2 •To only in a
small region which represents the current position of the disturbance. It is only
in this moving region of disturbance that the medium behaves as a viscous liquid.

A summary of all the calculations which have been performed are presented
in Table III.

TABLE III

Summary of exploratory calculations made with the explicit difference
scheme, a = 1. 5, A x = 0. 1 cm, At- 0. 05 p sec. Values represent
averages between the interface and the position of the disturbance after
5 microseconds. The units are in the gram-centimeter-microsecond
system.

No. ro 0.5 p U V(=l/p) P/Po Disturbance
TO Po Velocity

1 0 0 1.538 0.0265 0.0868 1.466 0.547

2 0 0.08 1. 550 0.0293 0.0871 1.461 0.549

9 O.l 0 1.567 0.0327 0.0876 1.452 0.560

10 O.l 0.08 1.555 0.0324 0.0877 1.450 0. 562

14 LOI 0.0811.737 0.0681 0.0897 1.418 0.661

8



IMPLICIT DIFFERENCE SCHEME

In this section an alternate computational scheme is outlined which is devised
to reduce the machine time required for those parameter combinations with large
go and vo values. It is an implicit scheme based on the Eulerian formulation,
whereas the original scheme, is explicit and is based on the Lagrangian formula-
tion. The new scheme is only valid for impact between bodies of identical material
with IA o. Therefore it does not supersede the explicit scheme, but serves an a
desirable complement

The procedure has been adopted upon the suggestion of Dr. Herbert Keller,
Institute of Mathematical Sciences, New York University. In treating similar sys-
tems of equations, Dr. Keller has found the implicit scheme to be unconditionally
stable. Thus, no restriction on At and Ax is involved, only the desired accuracy
need be considered in choosing the increment sizes.

(a) Difference Equations

Since the two impacting bodies are identical the phenomena are symmetric
about the center of mass coordinates (Fig. 6). The calculations will be made only
for body 2 where the fixed space coordinates are denoted by j = 0, 1, 2,... There
aq/6zT0 and, consequently, the Eulerian formulations of the governing equations,
equations (10) through (21) of Ref. 2, reduce to

a(pq)-+ =0
(3) a t a z

aq aq qF ap 4 2q
(4) + p+4AO__2

oz " P az 3+ az - r

(5) a_ aU 4 3 L4 ~ ..
a t ai Z 6 az

(6) P = f (p,U)

A centered difference scheme is used to provide more accuracy. To illus-
trate the process the details will be carried out for equation (3). The scheme is
centered at points =jA a, t =(n + 1/2) At as shown

9



+ 1 o -4- 0 points used in (3), (5)

t 0 points used in (4)

n X denotes center point

j-1 j+1

DISTANCE

in the sketch. Equation (3) is replaced by

1 n 1 p. - p
i -1 j-I _ _+l _j+I

At A t

(P +1 - (Pq)n (pq) n - (pq) n

+ j+1 - 1+1 -i = 0
2 2Az 2'z

Similar centered schemes may be written for (4) and (5). Upon simplification
the system becomes

pn+ 1 + Pn+1 1 0n + Pn

j-1 j+1 j-1 j+ 1

(7) n1 1~{ :+n ][ n+1 n ]

+ i At (pq) + (pq ][(pq) + (pq)
-10 j- j+ j+

10



n + 1 n 1 At n+1 n+l n+1 n n
____ +n q1+1 n+ 1 + j1

(8) 1 nat 1 f~j~ +1 1 PjiP iP'.n

pj 1P

8 Mo n4*1 n+1 n ~1 n n

Un+ 1 + Un+l -U +T

J-1 j +1 n4 - I L t]

+ 1 - n 1  n+1 n,. +1 .~~ n+ ~ ~

1- h1 + =+ fn l n /1
PJi 1 + j +1 j i

= f ( Pn+ 1 , Un.+ 1

n f(n +1  n u 1 )

(10)
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(b) Initial and Symmetry Conditions

The initial, n = 0, values of the dependent variables p, q, U, p are all known
from the Rankine-Hungoniot equations (Fig. 7). To determine their values at all
other time intervals a method of computing the values at time n + 1 from those
known at time n must be made available. An iteration technique will be devised
for this purpose. The following relations, which follow from the symmetry of the
problem, will be utilized:
(11) n n n ence n = 0)

p = q = -qn (h0)

-J j', -j j 0

n n n n

-j_ j , pj j

(c) Iteration Procedure

To start the iteration let

(12) ,n+1 n . n+ 1 nq i () q U ( ) Uq ' j (o) 1

n + I n + 1be zero-order approximations to q 1 and u respectively. Then the

first-order approximations are calculated in the following sequence:3

n+1 Sub-n+ 1 + 1
(a-) Substitute q (0) into (7) and calculate pn (1) from the

resulting two-term recurrence relation (n + 1 fixed, j varied):

,,.n+ 1 + ~n+1 =Pn + n i At n + I ,n+1 +(pq)n
j-1(1) j+1(1) j-1 j+1 2 AI[ -( 1 )q j-1(0) j 1

(13) n+ 1 n+ 1 n
- At 1P + 1(1) qj+ 1 (0) + ( p q ) +1

This procedure is adopted upon the suggestion of Dr. Herbert Keller, Institute of
Mathmetical Sciences, New York University.

12



Several methods of performing the calculations are discussed below in section (d).

(b-1) To obtain a trial value for pn ls (I0) with n j n+ 1 a

(n+ flfn 11
1' (0) ,

P i a) (I. ' -(0)

n+1 n+ 1 n+1
(c-1) To obtain a first-order approximation for U use (9) wit q p

n +-1 edbw'fl, +1 ~ t- +1 n
replaced by n (0) n j , ( 1) respectively:

V 1 + ) [u n +Un+I

I At [n+, ..n+1 _ ~n n+, fin+, .n u
+-i Z [z -'(O + '4 j+I(O) +q+l + q  +U up

,,,n+ I ,n+ n n

A +t qj (-qj-(O qj+ - qj-1  f-z jI o
(15) =  ..n+l in+l n

Pj-I(I) + Pj+I() + j+IPj-I

-.Pjj..g(i,)+ PJ+I 1 (I')+ Pj+I.+ Pj-I

2 /on n ,n
3 &z j+l(o -(O)+qj+-

As withp, we have here a two-term linear recurrence relation for UP+'
solution is also discussed In section (d).

n+1(d-1) A first-order approximation for pj is now computed from (10) with

n + I ,~,n+l and 'u9+ l

Pj Pj (I) j (1)

(16) ,.,n l ,,n w ,,n+ I

Pj (1) =fPj () Uj(1)

13



n+l
(e-1) To calculate a first-order approximation for q n use (8) with

n+l ,I ~n+i nil n+l n+1l
P = pj Pj Pj(I) andreplace qj inthe difference expression

for q aq/ z by ' j (0 ) . The latter substitution linearizes the equation for
n+1

(I) , giving
-n +1 n .lrt -n+l .)n+1 -n+1 n

(1) -qj +-§ ,qj) +  qj +1(0) qJ-()+q 1 -q

(17) 1 at 1 f 1... n+i-. n~i n(1) T z^n+l "n pj+ 1(1) -- 11 +J+I-Pj--
Pj1 + Pjf 1)+P

8§Zo ['-n+1 .- n+l ..n+1 nq+ l'
+3 Az j + 1(1)-zq (I+q-1) +q+l°1-

This is a three-term linear recurrence relation for ( +1 fixed, j varied);
a method of solution is discussed below in section (e).

The second-order approximations are calculated by merely repeating the
iteration process: (a-2), (b-2),..., (e-2). The resulting equations differ from the
corresponding equations of the first iteration only in that the subscripts (1), (2)
replace the subscripts (0), (1) respectively.

In general, to proceed from the k-order approximation to the (k+l) - order
approximation we go through the above iteration process (with subscripts (0), (1)
replaced by k and k+1 respectively). The process is repeated until a resonable
convergance criterion is satisfied. Usually, only a few cycles are required in
such schemes.

Assume that it has been decided that K iterations are sufficient. Then set

n+-1 n+1 n+l -n+I +I -n+ n+1 -n+1P j y J(K),~ qj jn1 U Up- )(K)' j(K) Pj j(K).

14



and proceed to the n+2 time step. A flow chart describing the numerical proce-

dure is given in Fig. 8.

(d) Two-Term Recurrence Relations

It is a consequence of the symmetry relations (11) that when j=0 the two-term
recurrence relation (a-i) simplifies and yields the explicit formula

1 At n
(18) n + 1 n 1 2_ z q0

1.1 At -n+1

2 z3 q, (0)

Now (a-i) may be used to compute n at all the odd j space-mesh points:ej (1)
n+l 1 + l At n+1 1, n+I At n+1]
J+2(1) 2 + i qj+2 (0)j + (1) 2 qj (1)

(19)

P1+2 [ lAt n n 1+

Thus, set j = 1 and compute in termsof set j =andcompute
(I)1 in terms of n+1() eo

5 (of p 3 (1)' etc.

The p (1) at even j are determined by the continuity of p for sufficiently

large J. pn+1 = p (the density of the undisturbed medium, which has not yet been
3 0

reached by the shock wave). Let J denote such a large even integer at time

t = (n +1) At. Then P0 = p0 and the recursion formula is used to calculate
.n+l +

from right to left. Thus, set j = J -2 and compute p - in terms of n(

set j = J - 4 and compute pJ4 (1) i terms of pj -2 (1)' etc.

A suitable value for J may be found by first making the calculations for the odd

v m nuntl (1 has decreased to the value po. This value is then

taken to be J -1. This left-to-right-to-left technique is depicted in the sketch.

_ _ Calculate Odd Stations X

j 0 1 2 3 4 J-4 J-3 J-2 J-1 J

Calculate Even Stations * 4

15
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Alternatively, the choice for J may be made from a knowledge of the propaga-
tion velocity of the disturbance. Then the calculations for both the odd and the
even stations may be performed from right-to-left. The advantage of this proce-
dure is that (18) may then be reserved to check the calculations.

The remarks made rbove are also applicable to the two-term linear recur-
rence relation for 'Un + Here the symmetry relations together with (15), with

j (1)
J=O, yield the explicit equation

'-n + 1 n
-n+ I nA t q1 (0 ) + q1

1(1) = U 1 Azn(1+ V o

(20) [3n+ 1 + n ]+2 o[ .n + qf1hn
(20) [ (1') pqo [#q,

By replacing the word "density" by "specific internal energy" the remainder of

the discussion on solving the recurrence relation also arries over.

(e) Three-Term Recurrence Relation

Relation (17) may be rewritten in the form

) - If +1 -P-+ n+1
(21) -Ai ++1 ( 1) + B q (1) - jC- 1 (1) -D

where Aj, Bj, Cj, Dj are known quantities:

A = 4IAo At 1
- 3 ( W (1) + ,n

(22) B =-1+2A C =A

16



(22) + ..n + + 11))-+ 1 1 I -n

A method for solving such a three-term linear recurrence relation which is
particularly suitable for machine calculations is taken from Riohtmyer (Ref. 6,
p. 101).

The required inequalities A, > 0, Bj, 0, C,> 0 ani Bj>AJ.C 1 are all soon to be
satisfied. The only other requirement is that q r be spiecified at the left and
right hand boundaries of the space mesh, J=0 andrj'J:

(23) n+1 0
01) 01 1

17



CONCLUSIONS

Preliminary runs with the program utilizing the explicit difference scheme
have shown that excellent results may be obtained provided the parameters po
and vo are not too large. The stability analysis provides estimates, depicted in
Table I, which will serve as a guide in the choice oft for the production runs
to be made on the IBM 7090 at Eglin Air Force Base. The stack of IBM cards
for this program are being transmitted along with this report.

The programing of the complementary implicit difference scheme will be
completed. When finalized, it will be sent to Eglin where production runs will
be made for those parameter combinations with large #o and vo values. The
two programs should permit the one-dimensional computations for the entire
range of impact parameters desired.

Simultaneously, a finite difference scheme for the visco-plastic equations
will be sought for the case of the axisymmetric impact problem. It had been
anticipated that the particle-in-cell method developed by Harlow (Ref. 7) for
a perfect fluid could be extended to our visco-plastic equations. Some effort
was spent in this direction but has currently been suspended. The method is
similar to the one-dimensional explicit scheme in that an "artificial viscosity"
is introduced and it is explicit. Stability problems can therefore bk expected
when viscosity is included. An alternative method by Kolsky (Ref. 8) may be
extended, but it has given best results when the flow is nearly spherical.

It may therefore be expedient to decompose the problem into two parts
as suggested by the study of the governing equations detailed in the Second
Quarterly Report:

1) An initial stage in which only the inertial terms of the governing visco-
plastic model are retained. The medium is then a perfect fluid and the
particle-in-cell method applies.

2) A secondary flow problem in which the flow has smoothed out to a nearly
spherical pattern. Here Kolsky's method should yield good results.

The feasibility of such a decomposition will be studied and a continued effort
will be made to devise a computational method valid during the entire cratering
process.

18
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APPENDIX

The explicit difference equations are given by (36) through (42) of the
Second Quarterly Report. They are as follows:

n+l n - At n n Qn nn Sn
q 3 pq i x Lp j+1/2 -Pi_12+QJ12-_12 j+1//2 1/2qj qj p- P. j 1/2 j/ j-l/2+j +l/2 j-,/Z

n+l n At -n+l n+l]+1/21 /2 + x lqj+1 -

?+1 8 o 1 n+I n

+ 1/ 3 At _ n V. n Lj+1/2 " J+1/2
j+1/2 + J+1/2

n+I Un Fn+l n 7n n+l n+1
J+l/2 j+l/2 L1j +l/2j- Zj+l2l/2J +1/2j +1/2J

(A-i)

3To0[ Vn+ l Vn3 J+1/2 j + 1/2

n+ 1 Po I n+1 n 2
+1/2 t2 n+l n LIi/ -V/ j+l/21

A~t) V. V. j
j +1/2 + j+l/2

n+l g( n+l un+l,Pj+l/ 2 -"gtj + 1/ 2 j+I1/2)

where we have eliminated X from (36) and (38) to obtain the second equation
and the equation of state is rewritten as p = f(V - 1 , U) a g(V, U). Here t is a
parameter with dimension of length which essentially determines the magnitude
of the pseudo-viscosity.

The analysis of the stability of this system follows the method outlined by
Richtmyer (Reference 6). The equations of firpt variation of (A-I) will be
obtained in which quantities of the second and higher order are dropped.
This will give us linear equations for the first order variations i, , S, L, (,
15 (the dot does = indicate time derivatives) in which the zero order quantities
appear as coefficients. The equations obtained are

20



n+l in At n-A 4A n
'Ii po i+1/---"-l1/2 -1 J+1/2 -l/z]

n+ I e at n+l n+lI
j+1/2 jn -++ 1.2ji

0

.4 % I [n+l Vn +
J+i1/2 3 t V 1 +1/2 j+1/2

(A-2) = -(o+Q+ 11  ~~ 1  - t(2) j +1/2= 3+1/Z ~ 1 +/2 J+1/2.

Pj +l/ 2 V 2 t J'+II2 J+
%+i -- t ( j + 1/2 - + 1/2]

~n+l1 L n+1 + 91 +l
Aj 12 V + 1/2 Wu J+1/2

The zero order quantities are considered constants and, consequently,
superscripts and subscripts denoting net points are omitted from them.

The first order quantities are assumed to have the Fourier representations

n n ikx n iki
4jn= A k eV. e k

k k

& n ikx fl n ikx

kI k k

d* I E nik neX nik

k kjkk

where x = jAx. The von Neuman stability criterion is, essentially, that tht
coefficients An,..., Fk remain bounded as the calculations proceed from
t - nat to t = (n+l) At, t a (n+2)4t, etc. To investigate this substitute
representations (A-3) into (A-2) and set like harmonics equal to sero to
obtain the relations
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(A-4) A~ An.1Bt (F' + E,+ Cn

Ak k\k k k

n+l1 n Af+l(A-5) B k =Bk iA

(A-6) Cn PO B~ n -~ ~B n

(A-7) n~2AYn= D- (+ *G [ +

CA-) k ,P~ at [Bk +Bk 14V~t at Lk k~

n+I A n+ +_U n+l
(A-) F V Bk a U k

where

(A- 1) 0 = sin(k~x/2)
p 0 Ax

Relations tA-5), (A-6) may be combined to yield

This may be substituted into (A-4) to obtain

(A-li) +1 = (1 4 A~t) n _it +F ]
If (A-il) is substituted into (A-.) the result is

n+I n n 2 2[,n+ nn

(A-i12) B =B + \3Vt I-IL 0A A '+L(t) kJ

Now (A-12) may be used to eliminate B n from (A-7) and (A-8) with the results
k

Z2



2
'p)/V) [2B +iO ~ (6t (n+nkV2 at kk

(A-14) Z( 2 't)l

Finally, substitution of (A-12), (A-l4) into (A-9) yields

Fn+l1U n + 0,tl 4 Po 2&t).A+02 tIE+
rk bV1 k k7~" k

(A- 15)

41In/+.~J. _( 1P 44o2in fk (t2- + n)]} .
auk+'33 V k

Upon introduction of the notations

O2sin kAx/) 4 o 2,,t
p AX 3V
0

(A-16) Au p+Q+S+ 'I T 6 =!A A21
1 v v

e= 2VCS=----'-.2 V a v it

the relations (A-il) through (A-15) may be written in the matrix form

Yn+1
(A-17) y U GY

where

n n+l

Bk

yn n yn~l n+l
_-- EnB;:: 4:

E n + l
Ek Ek

Fn Fn+l

k k
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and the "amplification matrix", which depends on ki and T' is given by

Y 0 0 -ioAt -i At

i yAt 1 0 ?(At)2  2 (At)2

(A-18) G- -i OyAAt 0 1 -#A(At)2  -0 2A(At) 2

iSYAt~j -) -?.Cc 0 (t 2 (~ -C) &CAt)2 ( - -C)

i ?yAt 6 2 62 (At) 2 (A
Lv aU

Now, expansion of the determinant jG - XII and setting the result equal
to zero shows that the eigenvalues, X, of G satisfy the equation

(A-19) {(X-) 2 (X1) + (2-¢At).43_1 4 + 02I(At)2(2eC" )j , 0

23 2

If t= constant and At/(Ax) 2= 0(1) as At, Ax-..0, then 2At a 0(1) and the
secular equation reduces to

(A-20) &(1) 2 {X1 2 At[ C . ] L

Thus, the von Neuman requirement for stability

(A-21) I X1 m r I + 0 (At)

is satisfied provided
2 t 2 Po (Po .02 1 3

where we have used the fact that V/at < 0. The inequality will hold provided
2At POV

(A-22) p (
3 ) PO+ 0~ at

It may be noted from (A-22) that in the limit as the viscosity tends to
zero the stability criterion reduces to

At V
(A-23) At V (P° = 0)

which is the value given by Richtmyer (Ref. 6, p. 220) for this case.
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In the case p = 0 it is also possible to derive a stability criterion from (A-19)
and (A-21) uder the condition that t, = a A x, where a is some constant, instead
of holding t constant. Then the restriction is found to be relaxed to

Po
p0

(A-24) t-

Criterion (A-23) holds in the region of the shock, and criterion (A-24) is valid
in regions away from the shock. iowever, if true viscosity is present ( 0)
then we must always have A t/(Ax) = 0(I) for stability; if A t/tAx a 0(l) one of
the eigenvalues goes to infinity. This results since in this case the p 0 term
in (A-19) does not have a factor of order (Ax) 2 but of order unity.

I
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Fig. 7 Tabular display of initial and boundary data for implicit
difference scheme.
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